

External Attack Surface for Initial Access in AWS Cloud

CyberWarFare Labs

CW Labs is a renowned UK based Ed-tech company specializing in cybersecurity cyber range labs. They provide on-demand educational services and recognize the need for continuous adaptation to evolving threats and client requirements.

The company has two primary divisions:

- 1. Cyber Range Labs
- 2. Up-Skilling Platform

INFINITE LEARNING EXPERIENCE

About Speaker:

Parth Agrawal (Security Intern @CWL)

Is a cloud security enthusiast with a keen interest in the intricacies of cloud services offered by AWS, Azure, and GCP. Possessing a comprehensive understanding of these platforms, they are particularly drawn to exploring Red Team methodologies. Interested in Red Team methodologies, focusing on vulnerability testing and detection across external attack surfaces.

Table of Contents

AWS Services

- Elastic Cloud Compute (EC2)
- ➤ Simple Storage Service (S3)
- Elastic Block Store (EBS)
- Relational Database Service (RDS)
- Elastic Load Balancing (ELB)
- Cognito
- > Cloudfront
- > Lambda

Sample Public URLs

♦ Recon:

- Scenario 1: OSINT
- Scenario 2: Unauthenticated Enumeration

AWS Services

EC2 | S3 | ELB | RDS | EBS Lambda | CloudFront | Cognito

Elastic Compute Cloud (EC2)

- EC2 provides globally distributed virtual machines known as Instances.
- > These Instances are divided into different categories which are targeted towards specific workloads.
- ➤ In EC2, an Operating System (OS) is known as Amazon Machine Image (AMI).

Simple Storage Service (S3)

- S3 provides scalable object storage service.
- S3 is divided into multiple storage classes tailored for particular use cases.
- The data objects are stored inside storage containers dubbed as buckets.
- ➤ These bucket names are globally unique across all S3 buckets in a given partition (Standard Regions, China Regions, and AWS GovCloud-US).

Elastic Block Store (EBS)

- AWS EBS (Elastic Block Store) is a block storage service provided by Amazon Web Services (AWS) for use with Amazon Elastic Compute Cloud (EC2) instances.
- Key features of AWS EBS include:
 - Block Storage
 - Elasticity
 - Performance
 - Snapshots and Backups
 - Data Encryption
 - High Availability
 - Integration with AWS Services

Relational Database Service (RDS)

- ➤ AWS RDS (Relational Database Service) is a managed database service provided by Amazon Web Services (AWS).
- RDS supports various database engines, including MySQL, PostgreSQL, MariaDB, Oracle, SQL Server, and Amazon Aurora.
- Key features of AWS RDS include:
 - Automated Backups
 - Automated Scaling
 - High Availability
 - Security
 - Monitoring and Metrics
 - Database Engine Options

Elastic Load Balancing (ELB)

- ➤ ELB is load balancing service which scales resources and distributes traffic among different targets (Instances, IPs, Containers) in one or more Availability Zones.
- ELB provides following offerings for different use cases:-
 - Application Load Balancers: Operates on layer 7 with support for protocols like HTTP(s) & WebSockets
 - Classic Load Balancer: Operates on layer 4/7 while supporting HTTP(s), TCP, & SSL/TLS
 - Gateway Load Balancers: Operates on layer 3 while supporting IP protocol
 - Network Load Balancers: Operates on layer 4 with support for TCP & UDP

Cognito

- Cognito is a Customer Identity and Access Management service.
- It provides scalable user identity management with integrations with AWS services & custom solutions.
- Cognito is consist of two main components as follows:
 - User Pool: Directory of user information
 - ldentity Pool: Access manager for different AWS resource access

CloudFront

- CloudFront is a globally distributed, fast & secure Content Delivery Network (CDN).
- It is commonly used to serve content (static/dynamic) from a location near to visitor.
- CloudFront provides seamless integration with AWS services & custom applications.
- It can be used to hide origin information.

Lambda

- AWS Lambda is a serverless computing service provided by Amazon Web Services (AWS). It allows you to run code without provisioning or managing servers.
- ➤ With Lambda, you can execute code in response to events triggered by other AWS services, HTTP requests via Amazon API Gateway, or custom events.
- Key aspects of AWS Lambda include:
 - Event-driven
 - Serverless
 - Supported Runtimes
 - Pay-per-use
 - Scalability
 - Integration

Public URLs

For Available Services

Services	Sample Public URL
EC2	http:// <ec2-public-ip></ec2-public-ip>
S3	https:// <s3-bucket-name>.s3.amazonaws.com/<object-key> OR http://[bucketname].s3-website-[region].amazonaws.com/</object-key></s3-bucket-name>
CloudFront	https:// <random_id>.cloudfront.net</random_id>
SSO	https:// <companyname>.awsapps.com/</companyname>

Scenario 1: OSINT

RECON

EC2 Recon

Recon via **Shodan**:

```
org:Amazon ssl.cert.subject.cn:<ORGANIZATION NAME>
```

net:<NETBLOCK_RANGE> ssl.cert.subject.cn:<ORGANIZATION_NAME>

org:Amazon hostname:<ORGANIZATION_NAME>

EC2 Recon

Recon via fofa:

```
app="AWS" && protocol="HTTP" && title="Apache" && region="aws_region"
```


Recon via **Shodan**:

```
title: "AWS S3 Explorer"
```

http.title: "Amazon Cognito Developer Authentication Sample"

Recon via fofa:

```
app="amazon-AmazonS3"
```

body="ListBucketResult"

CLI-based Recon:

• Cloud Enum:

```
./cloud enum.py -k <KEYWORD> --disable-azure --disable-gcp
```

• S3 Scanner:

```
./s3scanner -bucket <KEYWORD> -enumerate -json
```

BucketLoot:

```
./bucketloot <Target_URL>
```

© All Rights Reserved CyberwarFare Labs

Web-based Recon:

- Bucket search:
 - https://osint.sh/buckets
 - https://buckets.grayhatwarfare.com
 - https://builtwith.com/
 - https://s3browser.com/
- Dorks:
 - GitHub Dorks:

"s3.amazonaws.com" org:<ORGANIZATION NAME>

Web-based Recon:

- Dorks:
 - More Google Dorks:

```
site:http://s3.amazonaws.com intitle:index.of.bucket ""
```

```
site:s3.amazonaws.com "index of /" s3
```

site:.s3.amazonaws.com "Company"

```
site:amazonaws.com filetype:xls password
```

```
site:*.s3.amazonaws.com ext:xls | ext:xlsx | ext:csv
password|passwd|pass user|username|uid|email
```

© All Rights Reserved CyberwarFare Labs

EBS Recon

Recon via fofa:

```
app="AWS" && body="ebs" && body="size:100" && region="aws_region"
```

```
app="AWS" && body="ebs" && body="volumeType:gp2" && region="aws_region"
```

```
app="AWS" && body="snapshot" && body="public:true" && region="aws_region"
```

```
app="AWS" && body="EC2" && region="aws_region"
```

app="AWS" && body="blockDeviceMapping"

EBS Recon

CLI-based Recon:

• Cloud Enum:

```
./cloud_enum.py -k ebs --disable-azure --disable-gcp
```

Web-based Recon:

Dork:

```
"Elastic Block Store" OR "AWS EBS" site:github.com OR site:stackoverflow.com OR site:aws.amazon.com
```


RDS Recon

Recon via **Shodan**:

```
product:"postgreSQL" port:5432 org:"Amazon.com"
```

PostgreSQL → 5432, MySQL → 3305, SQL Server → 1433

Recon via fofa:

```
app="AWS" && body="RDS" && region="aws region"
```

```
app="AWS" && body="RDS" && body="MySQL" && region="aws region"
```

```
app="AWS" && body="RDS" && body="public" && region="aws region"
```


RDS Recon

Web-based Recon:

Dorks:

```
"Relational Database Service" OR "AWS RDS" site:github.com OR site:stackoverflow.com OR site:aws.amazon.com
```

```
site:pastebin.com "rds.amazonaws.com" "u " pass OR password
```

CLI-based Recon:

• Cloud Enum:

```
./cloud enum.py -k rds --disable-azure --disable-gcp
```


ELB Recon

Recon via **Shodan**:

```
cloud.provider:Amazon product:"AWS ELB"

Set-Cookie: AWSELB

Location: elb.amazonaws.com
```

Recon via Censys:

```
((services.http.response.headers: (key: "Set-Cookie" and
value.headers: "AWSELB")) and autonomous_system.name=`AMAZON-02`) and
labels=`<KEYWORD>`\
```

dns.names: "elb.amazonaws.com"

© All Rights Reserved CyberwarFare Labs

ELB Recon

Recon via fofa:

```
app="AWS" && body="ELB" && region="aws_region"
```

```
app="AWS" && body="ELB" && body="DNSName" && region="aws_region"
```

```
app="AWS" && body="ELB" && body="SSLCertificateId" && region="aws_region"
```


Cognito Recon

Recon via **Shodan**:

```
Location: aws.cognito.signin.user.admin

amazoncognito.com

Recon via Censys:

"aws.cognito.signin.user.admin"
```


Cognito Recon

Recon via fofa:

```
app="AWS" && body="Cognito" && body="UserPool"
```

```
app="AWS" && body="Cognito" && body="IdentityPool"
```


CloudFront Recon

Recon via **Shodan**:

```
User-Agent: Amazon Cloudfront
```

Recon via Censys:

CloudFront Recon

Recon via fofa:

```
app="AWS" && body="CloudFront" && body="Distribution"
```

```
app="AWS" && body="CloudFront" && body="OriginDomainName"
```

```
app="AWS" && body="CloudFront" && body="SSLCertificateId"
```


Lambda Recon

Recon via fofa:

```
app="AWS" && body="Lambda" && body="Function"

app="AWS" && body="Lambda" && body="Runtime"
```

Web-based Recon:

- Dorks:
 - o Github Dorks:

© All Rights Reserved CyberwarFare Labs

Lambda Recon

Web-based Recon:

- Dorks:
 - Google Dorks:

```
site:aws.amazon.com "<KEYWORD>"

site:stackoverflow.com aws lambda

site:github.com "arn:aws:lambda"
```


in the first of th

Enum

EC2 Image Recon

CLI-based Recon:

To identify publicly accessible Amazon Machine Image (AMI), Search AMI by ownerID, Search AMI by substr ("shared" in the example).

```
aws ec2 describe-images --executable-users all

aws ec2 describe-images --executable-users all --query
'Images[?contains(ImageLocation, `967541184254/`) == `true`]'

aws ec2 describe-images --executable-users all --query
'Images[?contains(ImageLocation, `shared`) == `true`]'
```


EC2 Image Recon

CLI-based Recon:

To identify any publicly accessible Amazon Machine Image (AMI) available in the selected AWS cloud region.
 DUTPUT

```
| DescribeImages
```

ami-0abcd1234abcd1234

ami-01234abcd1234abcd

ami-0abcdabcdabcdabcd

EC2 Image Recon

CLI-based Recon:

To determine whether the selected image has public launch permissions.

"true" means publicly shared and "false" means publicly not shared

```
1 [
2 true
3 ]

★ OUTPUT
```


S3 Recon

CLI-based Recon:

> To list the names of all Amazon S3 buckets available in your AWS cloud account

```
aws s3api list-buckets --query 'Buckets[*].Name'
```

```
★ OUTPUT
```

© All Rights Reserved CyberwarFare Labs

S3 Recon

CLI-based Recon:

To describe the Access Control List (ACL) configuration set for the Everyone (public access) grantee, available for the selected S3 bucket

```
aws s3api get-bucket-acl --bucket
    your-bucket-name
```

→ "Permission=FULL_CONTROL" means the selected Amazon S3 bucket is publicly exposed to the Internet, therefore the bucket ACL configuration is not secure and compliant

```
1 [
2 {
3    "Grantee": {
4     "Type": "Group",
5     "URI": "http://acs.amazonaws.com/groups/global/ALL
6    },
7    "Permission": "FULL_CONTROL"
8  }
9 ]
```


CLI-based Recon:

To identify any publicly accessible EBS volume snapshots within your AWS account.

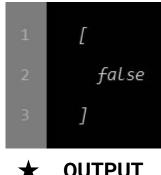
CLI-based Recon:

To identify any publicly accessible EBS volume snapshots within your AWS account.

→ "Group=all" means selected snapshot is publicly accessible.

```
1 {
2 "Group": "all"
3 }
```

★ OUTPUT



CLI-based Recon:

To discover any unencrypted EBS volume snapshots present in your AWS account.

```
aws ec2 describe-snapshots --region us-east-1
    --snapshot-id snap-0b82cb946915a7e4f
      --query 'Snapshots[*].Encrypted'
```

"true" for encrypted and "false" for unencrypted

CLI-based Recon:

To obtain zone and instance after obtaining public snapshot name

```
aws ec2 describe-instances --filters
Name=tag:Name, Values=<Machine Name>
```

> To Create a new volume of it

CLI-based Recon:

Attach to an EC2 instance

> To view EC2 instance

```
aws ec2 describe-volumes
--filters Name=volume-id, Values=<VOLUME ID>
```


CLI-based Recon:

To identify whether Amazon RDS database snapshot have public accessibility.

```
aws ec2 describe-db-snapshots

aws rds describe-db-snapshots --snapshot-type
manual --include-public

snapshot-type: manual, automated, awsbackup

aws rds describe-db-snapshots
--region us-east-1 --output table
```

--query 'DBInstances[*].DBInstanceIdentifier'

```
★ OUTPUT
```


CLI-based Recon:

To identify whether your Amazon RDS database snapshots have public accessibility.

→ "AttributeValues=all" means selected Amazon RDS database snapshot is publicly accessible and available for any AWS account to copy or restore it.

★ OUTPUT



CLI-based Recon:

To discover any unencrypted RDS database snapshots present in your AWS account.

```
aws rds describe-db-instances --region us-east-1
--db-instance-identifier cc-project5-mysql-database
    --query 'DBInstances[*].StorageEncrypted'
```

"true" for encrypted and "false" for unencrypted

OUTPUT

CLI-based Recon:

To restore Amazon RDS database snapshot in instance

Once restored, try to access

```
aws rds describe-db-instances --db-instance-identifier recoverdb
```


CLI-based Recon:

> To reset the master credentials

```
aws rds modify-db-instance --db-instance-identifier recoverdb
    --master-user-password NewPassword1 --apply-immediately
```

To check, Instance is there

aws rds describe-db-instances

MCRTA Certification

AWS !

| Azure |

GCP

- > Who can opt for it
 - → Cyber Security Beginners / Professionals
 - → Security Analysts / Security Consultants / Security Engineers
 - → Anyone Interested in Cloud Security / Cloud Pentesting / Cloud Red Teaming Domains

For Professional Red Team / Blue Team / Purple Team / Cloud Cyber Range labs / Trainings please contact

support@cyberwarfare.live

To know more about our offerings, please visit: https://cyberwarfare.live