

Cyber Defense Strategies for

Combating C2 Based Attacks

aws

Cloud

Security

About CyberWarFare Labs :

CW Labs is a renowned UK based Ed-tech company specializing in cybersecurity cyber range labs. They provide on-demand educational services and recognize the need for continuous adaptation to evolving threats and client requirements. The company has two primary divisions :

1. Cyber Range Labs

2. Up-Skilling Platform

E LEARNING EXPERIENCE

About Speaker:

<u>Harisuthan S</u> (Senior Security Engineer)

Is a Blue Team Security researcher, bringing over 3+ years of experience in cyber defence. possesses a deep understanding of Blue Team methodologies including investigation and detection over cyber attacks,

Agenda

- Working of C2
- Investigating C2 targeted attacks
- JA3 Fingerprinting
- Certification Procedure

Certified Cyber Defense Analyst : CCDA

Working of Command & Control

Working of Command & Control

General Working Overview

Internal Network

Compromised Host Machine

Common C2 Services

root@box:-/naughty# ./sliver-server

Metasploit

Working Overview

The overall overview of Cyber Defence has been grouped into three categories

- Malicious File Drop
- Initial Communication
- Handshake
- **Command Transmission**
- Data Exfiltration
- Beaconing

Investigating C2 targeted attacks

The primary objective is to conduct a thorough investigation into a suspected memory dump [mem] and network dumb [PCAP] with the goal of identifying the source, scope, and impact of the attack.

Investigative Mind Map

Examine the Network Traffic

Analyze the network connectivity associated with the detected IP address

JA3 Fingerprinting

Gather the information

The first step of investigation begins by analysing the basic information such as the operating system version, architecture, and system configuration can aid in accurately identifying the system being analysed.

Use the following command to obtain the basic information for the detected image dump.

sudo python3 vol.py -f <file_path> windows.info.Info

Identify the external IP address and Suspicious file

After gathering the basic information the next step is to identify the the IP which is trying to communicate over the reported port **8888**, Additionally we also identified that the file **AMATEUR_TOOTHB** is been associated with the same activity

(kali@kali) \$ sudo python Volatility 3 Fr Progress: 100.	-[~/Desk 3 vol.py amework	top/New Folder/v -f /home/kali/D 2.4.1 PDB sca	olatilit ownloads nning fi	x y3-2.4.1] /memdump.mem win	dows.ne [.]	tstat.NetSt	tat					
Offset Proto	LocalAd	ldr LocalPo	rt	ForeignAddr	Foreig	nPort S	State	PID	Owner	Created		
0×c18d521ee4e0	TCPv4	192.168.14.238	50355	152.199.39.108	443	CLOSE WAI	IT	7636	WWAHost.	exe	2024-04-24	14:06:23.000000
0×c18d4c04f4a0	TCPv4	192.168.14.238	50550	192.168.14.202	8888	ESTABLISH	HED	6236	AMATEUR	TOOTHB	2024-04-24	14:23:20.000000
0×c18d4a8c2460	TCPv4	192.168.14.238	49747	20.198.119.143	443	ESTABLISH	HED	2944	svchost.	exe	2024-04-25	02:17:09.000000
0×c18d4f2b0010	TCPv4	192.168.14.238	50554	20.189.173.1	443	ESTABLISH	HED	3524	msedge.e	exe	2024-04-24	14:26:08.000000
0×c18d51dd29b0	TCPv4	192.168.14.238	50356	152.199.39.108	443	CLOSE_WAI	IT	7636	WWAHost.	exe	2024-04-24	14:06:23.000000
0×c18d51ff5b20	TCPv4	192.168.14.238	50353	152.199.39.108	443	CLOSE_WAT	IT	7636	WWAHost.	exe	2024-04-24	14:06:23.000000
0×c18d4f4862a0	TCPv4	192.168.14.238	50555	20.44.10.123	443	ESTABLISH	HED	3524	msedge.e	exe	2024-04-24	14:26:09.000000
0×c18d4fbcea20	TCPv4	192.168.14.238	50350	152.195.38.76	80	CLOSE_WAD	IT	7636	WWAHost.	exe	2024-04-24	14:06:23.000000

Examine the identified suspicious file

Next step of the investigation is to download the detected suspicious file for further investigation to, using our raw image file we can easily retrieve the file using the PID value associate with it, execute the below mentioned commands and observed the result

sudo python3 vol.py -f <file_path>/suspected.raw windows.pslist --pid 6236 --dump

<mark>(kal</mark> \$ suc Volatil	liskali) lo pythor .ity 3 Fr)-[~/Desktop/New n3 vol.py -f /hom ramework 2.4.1	Folder/volatilit e/kali/Downloads	y3-2.4.1 /memdump] .mem wind	dows.psl:	lstpi	id 6236 -	dump
Progres PID	s: 100. PPID	.00 ImageFileName	<pre>PDB scanning fi Offset(V)</pre>	nished Threads	Handles	Session	[d	Wow64	CreateTi
6236	4444	AMATEUR_TOOTHB	0×c18d53262340	9	-	1	False	2024-04	-24 14:23

ExitTime me

File output

N/A :20.000000

pid.6236.0×890000.dmp

Determine the File Repudiation

Σ

The next step is to analyse the dump via virustotal, upload the extracted dump directly into the virustotal for further analysis

م 56b730a66ac1e34f2797cbf49a9800	05dd52909bedf608243	1725f91caeac0aa5	
We have changed our Privacy Notice and Terms of	f Use, effective July 18,	2024. You can view the updated Privacy Notic	and <u>Terms of Use</u> .
	19	① 19/71 security vendors and no security vendors.	andboxes flagged this file as malici
	/71	56b730a66ac1e34f2797cbf49a98005c pid.6236.0x890000.dmp	ld52909bedf6082431725f91caeac0aa
	Community Score	peexe 64bits	
	DETECTION	DETAILS BEHAVIOR C TELEM	IETRY COMMUNITY
	Join the VT Com	munity and enjoy additional community insigh	its and crowdsourced detections, plu
	Popular threat la	bel ① trojan.sliver/malgo	Threat categories trojan
	Security vendors	analysis 🛈	
	Avast	() Win64:Evo-gen [Trj]	
	Bkav Pro	() W64.AIDetectMalwar	e
	DeepInstinct	() MALICIOUS	
	ESET-NOD32	() A Variant Of WinGo/H	lackTool.Sliver.O
	Ikarus	(!) Trojan.WinGo.Shellco	oderunner

From our previous investigation we identified the IP: 192.168.14.202 which is been associated with the activity, execute the below query to specifically retrieve the activity associated with the IP

ip.addr == <IP_Address>

📕 traffi	ic.pcapng						
<u>File</u>	dit <u>V</u> iew <u>G</u> o <u>C</u> apture	e <u>A</u> nalyze <u>S</u> tatistics Tel	ephon <u>y W</u> ireless <u>T</u> ools <u>H</u>	lelp			
	🖉 🛞 🚞 🛅 🕱 🙆	। ९ 🖛 🔿 🖭 🖌 👤	. 🛛 🔍 🔍 🖽				
📕 ip.add	lr == 192.168.14.202						
No.	Time	Source	Destination	Protocol	Src Port	Dest Port	Length
Г	41 11.230563	192.168.14.238	192.168.14.202	TCP		50543 80	
	42 11.234023	192.168.14.202	192.168.14.238	TCP		80 50543	
	43 11.234146	192.168.14.238	192.168.14.202	TCP		50543 80	
	44 11.234448	192.168.14.238	192.168.14.202	HTTP		50543 80	
	45 11.235516	192.168.14.202	192.168.14.238	TCP		80 50543	
	46 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	47 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	48 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	49 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	50 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	51 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	52 11.240519	192.168.14.202	192.168.14.238	ТСР		80 50543	
	53 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	54 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	55 11.240519	192.168.14.202	192.168.14.238	TCP		80 50543	
	56 11.240751	192.168.14.238	192.168.14.202	TCP		50543 80	
	57 11.241766	192.168.14.202	192.168.14.238	TCP		80 50543	
	58 11.241766	192.168.14.202	192.168.14.238	TCP		80 50543	
	59 11 241766	192 168 14 202	192 168 14 238	TCP		80 50543	

			- 0	\times	
			(m == 1) .	2	
 			× • •	te	est
	Info				
66	50543 → 80	[SYN]	Seq=0 Win=64240 Len=0 MSS=1460 WS=2		
66	80 → 50543	[SYN,	ACK] Seq=0 Ack=1 Win=64240 Len=0 MS		
54	50543 → 80	[ACK]	Seq=1 Ack=1 Win=262656 Len=0		
344	GET /AMATEU	R_TOOT	THBRUSH.exe HTTP/1.1		
60	80 → 50543	[ACK]	Seq=1 Ack=291 Win=64128 Len=0		
1514	80 → 50543	[ACK]	Seq=1 Ack=291 Win=64128 Len=1460 [1		
1514	80 → 50543	[ACK]	Seq=1461 Ack=291 Win=64128 Len=1460		
1514	80 → 50543	[ACK]	Seq=2921 Ack=291 Win=64128 Len=1460		
1514	80 → 50543	[ACK]	Seq=4381 Ack=291 Win=64128 Len=1460		
1514	80 → 50543	[PSH,	ACK] Seq=5841 Ack=291 Win=64128 Ler		
1514	80 → 50543	[ACK]	Seq=7301 Ack=291 Win=64128 Len=1460		
1514	80 → 50543	[ACK]	Seq=8761 Ack=291 Win=64128 Len=1460		
1514	80 → 50543	[ACK]	Seq=10221 Ack=291 Win=64128 Len=146		
1514	80 → 50543	[ACK]	Seq=11681 Ack=291 Win=64128 Len=146		
1514	80 → 50543	[PSH,	ACK] Seq=13141 Ack=291 Win=64128 Le		
54	50543 → 80	[ACK]	Seq=291 Ack=14601 Win=262656 Len=0		
1514	80 → 50543	[ACK]	Seq=14601 Ack=291 Win=64128 Len=146		
1514	80 → 50543	[ACK]	Seq=16061 Ack=291 Win=64128 Len=146		
1514	80 → 50543	[ACK]	Seg=17521 Ack=291 Win=64128 Len=146		

After identifying the malicious download request our next step is to retrieve the activity associated with port reported port 8888, execute the below query and observe the result

ip.addr == <IP_Address> && tcp.dstport == <Port>

A 2000	C							
Traf	nc.pcapng							
<u>F</u> ile <u>I</u>	<u>Edit View Go</u> <u>C</u> apture	<u>Analyze</u> <u>Statistics</u> Tele	ephon <u>y W</u> ireless <u>T</u> ools <u>H</u>	elp				
	🥂 🔘 🚞 🛅 🗙 🙆	। ९ 🗢 🔿 🖭 💽	📃 🔍 લ્ લ્ 🎹					
ip.ad	dr == 192.168.14.202 && tcp.	dstport == 8888						
No.	Time	Source	Destination	Protocol	Src Port	Dest Port	Le	ength
	11892 40.148081	192.168.14.238	192.168.14.202	TCP		50547 8888		
	11894 40.675803	192.168.14.238	192.168.14.202	ТСР		50547 8888		
	11897 41.191682	192.168.14.238	192.168.14.202	ТСР		50547 8888		
	11899 41.708809	192.168.14.238	192.168.14.202	ТСР		50547 8888		
	11903 42.214498	192.168.14.238	192.168.14.202	ТСР		50547 8888		
	12043 93.210562	192.168.14.238	192.168.14.202	TCP		50550 8888		
	12045 93.211550	192.168.14.238	192.168.14.202	TCP		50550 8888		
	12046 93.218169	192.168.14.238	192.168.14.202	TLSv1.3		50550 8888		
	12049 93.228012	192.168.14.238	192.168.14.202	TLSv1.3		50550 8888		
	12050 93.264809	192.168.14.238	192.168.14.202	TLSv1.3		50550 8888		
	12051 93.264944	192.168.14.238	192.168.14.202	TLSv1.3		50550 8888		
	12068 102.221635	192.168.14.238	192.168.14.202	TCP		50551 8888		
1	12070 102.224247	192.168.14.238	192.168.14.202	TCP		50551 8888		
	12071 102.225660	192.168.14.238	192.168.14.202	TLSv1.3		50551 8888		
	12074 102.231669	192.168.14.238	192.168.14.202	TLSv1.3		50551 8888		
	12075 102.249535	192.168.14.238	192.168.14.202	TLSv1.3		50551 8888		
	12076 102.249674	192.168.14.238	192.168.14.202	TLSv1.3		50551 8888		
	12215 108.317201	192.168.14.238	192.168.14.202	TCP		50550 8888		
	12216 100 221170	102 169 14 229	102 169 14 202	TCP		50550 0000		

	+ test
Info	
66 50547 → 8888 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS	
66 [TCP Retransmission] [TCP Port numbers reused] 50547	
66 [TCP Retransmission] [TCP Port numbers reused] 50547	
66 [TCP Retransmission] [TCP Port numbers reused] 50547	
66 [TCP Retransmission] [TCP Port numbers reused] 50547	
66 50550 → 8888 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS	
54 50550 → 8888 [ACK] Seq=1 Ack=1 Win=2102272 Len=0	
293 Client Hello	
683 Change Cipher Spec, Application Data, Application Da	
80 Application Data	
456 Application Data	
66 50551 → 8888 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS	
54 50551 → 8888 [ACK] Seq=1 Ack=1 Win=262656 Len=0	
293 Client Hello	
682 Change Cipher Spec, Application Data, Application Da	
80 Application Data	
457 Application Data	
54 [ICP Keep-Alive ACK] 50550 \rightarrow 8888 [ACK] Seq=1297 Ack	

Based on the findings, we've detected TLS communication between the compromised host and the external network. Initially, the requests and responses followed the typical pattern, but in our case, we're observing multiple occurrences of client hello and application data exchanges, which deviate from the norm.

12045 55.211550	172.100.14.250	172.100.14.202	101	50550 0000	J4 J0JJ0 / 00
12046 93.218169	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	293 <mark>Client Hel</mark>
12049 93.228012	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	683 Change Cip
12050 93.264809	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	80 Applicatio
12051 93.264944	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	456 Applicatio
12068 102.221635	192.168.14.238	192.168.14.202	TCP	50551 8888	66 50551 → 88
12070 102.224247	192.168.14.238	192.168.14.202	TCP	50551 8888	54 50551 → 88
12071 102.225660	192.168.14.238	192.168.14.202	TLSv1.3	50551 8888	29 <mark>3 Client Hel</mark>
12074 102.231669	192.168.14.238	192.168.14.202	TLSv1.3	50551 8888	682 Change Cip
12075 102.249535	192.168.14.238	192.168.14.202	TLSv1.3	50551 8888	80 Applicatio
12076 102.249674	192.168.14.238	192.168.14.202	TLSv1.3	50551 8888	457 Applicatio
12215 108.317201	192.168.14.238	192.168.14.202	TCP	50550 8888	54 [TCP Keep-
12216 108.321179	192.168.14.238	192.168.14.202	TCP	50550 8888	55 [TCP Keep-
12269 117.277616	192.168.14.238	192.168.14.202	ТСР	50551 8888	54 [TCP Keep-
12270 117.321054	192.168.14.238	192.168.14.202	TCP	50551 8888	55 [TCP Keep-
12277 122.402975	192.168.14.238	192.168.14.202	TCP	50550 8888	54 50550 → 88
12278 122.404923	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	80 Applicatio
12279 122.405047	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	111 Applicatio
12285 127.256792	192.168.14.238	192.168.14.202	TCP	50550 8888	54 50550 → 88
12286 127.358363	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	80 Applicatio
12287 127.358510	192.168.14.238	192.168.14.202	TLSv1.3	50550 8888	1648 Applicatio
12291 132.332387	192.168.14.238	192.168.14.202	ТСР	50551 8888	55 [TCP Keep-
12298 142.366824	192.168.14.238	192.168.14.202	TCP	50550 8888	55 [TCP Keep-
12300 142.368574	192.168.14.238	192.168.14.202	TCP	50550 8888	54 [TCP Keep-
40000 447 00000	400 400 44 000	400 400 44 000	TOD	50554 0000	

her Spec, Application Data, Application Data, Application Data n Data n Data 88 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM 88 [ACK] Seq=1 Ack=1 Win=262656 Len=0 her Spec, Application Data, Application Data, Application Data n Data n Data Alive ACK] 50550 → 8888 [ACK] Seq=1297 Ack=745 Win=2101504 Len=0 Alive] 50550 → 8888 [ACK] Seg=1296 Ack=745 Win=2101504 Len=1 Alive ACK] 50551 → 8888 [ACK] Seq=1297 Ack=744 Win=261888 Len=0 Alive] 50551 → 8888 [ACK] Seq=1296 Ack=744 Win=261888 Len=1 88 [ACK] Seg=1297 Ack=816 Win=2101504 Len=0 n Data n Data 88 [ACK] Seq=1380 Ack=891 Win=2101504 Len=0 n Data n Data Alive] 50551 → 8888 [ACK] Seq=1296 Ack=744 Win=261888 Len=1 Alive] 50550 → 8888 [ACK] Seq=2999 Ack=891 Win=2101504 Len=1 Alive ACK] 50550 → 8888 [ACK] Seq=3000 Ack=891 Win=2101504 Len=0

Typically, these patterns are observed in **C2** communication. The C2 sends client hello requests to check if the targeted host is active and accessible. When the attacker attempts to push malicious commands, they are sent as application data. It's worth noting that even if you attempt to read the packets, the information inside is encrypted and not in a readable format.

📕 Wireshark · Packet 12286 · traffic.pcapng

> Frame 12286: 80 bytes on wire (640 bits), 80 bytes captured (640 bits) on interface \Device\NPF {17C33C3C-2E4D-4BC1 > Ethernet II, Src: PcsCompu_ab:7d:97 (08:00:27:ab:7d:97), Dst: PcsCompu_73:6e:ba (08:00:27:73:6e:ba) > Internet Protocol Version 4, Src: 192.168.14.238, Dst: 192.168.14.202 > Transmission Control Protocol, Src Port: 50550, Dst Port: 8888, Seq: 1380, Ack: 891, Len: 26

- > Transport Layer Security

0000	08	00	27	73	6e	ba	08	00	27	ab	7d	97	08
0010	00	42	7b	c9	40	00	80	06	00	00	c0	a8	0e
0020	0e	ca	c5	76	22	b 8	Øb	63	1d	93	95	4a	b1
0030	20	11	9f	3d	00	00	17	03	03	00	15	2e	08
0040	63	c1	ee	bc	ab	07	d1	9c	51	13	f1	40	39

00	45	00	···'sn···· '·}···E·
ee	c0	a8	-B{-@
e5	50	18	····v"··c ···J··P·
c7	89	76	··=····V
88	c4	c2	c Q @9

JA3 Fingerprinting

JA3 correlation methodology will help us in identifying and categorizing different types of software or libraries based on their unique fingerprints generated during the handshake process, JA3 typically get generated based on their cryptographic characteristics of the SSL/TLS handshake.

Each unique SSL/TLS handshake will result in unique JA3 fingerprinting.

Working of TLS Handshake

Working of JA3

JA3 fingerprinting value is calculated by collecting the decimal values of the bytes for the following fields.

- Version
- Accepted Ciphers
- List of Extensions
- Elliptic Curves
- Elliptic Curve Formats

The collected decimal values are then hash to MD5 format and resulted with 32 character fingerprints.

~	Tr	anspor	rt Layer Sec	urity
	~	TLSv1	.2 Record L	ayer: Handshake
		Со	ntent Type:	Handshake (22)
		Ve	rsion: TLS	1.0 (0x0301)
		Le	ngth: 512	
		✓ Ha	ndshake Pro	tocol: Client He
			Handshake	Type: Client Hel
			Length: 508	3
			Version: T	LS 1.2 (0x0303)
		>	Random: f96	50dc3adc8edd6636
			Session ID	Length: 32
			Session ID	: dd6c51fa66ac1
			Cipher Suit	tes Length: 36
		>	Cipher Suit	tes (18 suites)
			Compression	n Methods Length
		>	Compression	n Methods (1 met
			Extensions	Length: 399
		>	Extension:	server name (le
		>	Extension:	ec_point_format
		>	Extension:	supported_group
		>	Extension:	session_ticket
		>	Extension:	application_lay
		>	Extension:	encrypt_then_ma
		>	Extension:	extended_master
		>	Extension:	post_handshake_
		>	Extension:	signature_algor
		>	Extension:	supported_versi
		>	Extension:	psk_key_exchang
		>	Extension:	key_share (len=

Protocol: Client Hello

ello llo(1)

0139f558a1a0bf8259392ab92243a64716b61bd6b83cca9

f3d511c185198f4b8520cbf6a7712016f19ef49bcfcff942aad

```
h: 1
thod)
en=41)
ts (len=4)
ps (len=22)
(len=0)
ver_protocol_negotiation (len=11)
ac (len=0)
r_secret (len=0)
auth (len=0)
rithms (len=42)
ions (len=5)
ge_modes (len=2)
=38)
```


Co-relating the JA3

On the Client Hello request we can identify the JA3 section under the Transport Layer Security

This generated JA3 value can be further searched over internet to determine the whether its been associated with any other malicious activity

1	Transport Layer Security
	 TLSv1.3 Record Layer: Handshake Protocol: Client Hello
	Content Type: Handshake (22)
	Version: TLS 1.0 (0x0301)
	Length: 234
	✓ Handshake Protocol: Client Hello
	Handshake Type: Client Hello (1)
	Length: 230
	Version: TLS 1.2 (0x0303)
	Random: 9b13a36a903efce16a8405ae74f79e5670457d8f7883bc5939331c34ffe46
	Session ID Length: 32
	Session ID: 63cd29a7aaab9231b041de3d981999bc705842b2fda591d061b29754e
	Cipher Suites Length: 38
	> Cipher Suites (19 suites)
	Compression Methods Length: 1
	> Compression Methods (1 method)
	Extensions Length: 119
	<pre>> Extension: status_request (len=5)</pre>
	> Extension: supported_groups (len=10)
	<pre>> Extension: ec_point_formats (len=2)</pre>
	> Extension: signature_algorithms (len=26)
	> Extension: renegotiation_info (len=1)
	> Extension: signed_certificate_timestamp (len=0)
	> Extension: supported_versions (len=5)
	<pre>> Extension: key_share (len=38)</pre>
	[JA3 Fullstring: 771,49195-49199-49196-49200-52393-52392-49161-49171-4
	[JA3: 19e29534fd49dd27d09234e639c4057e]

JA3 Value

19e29534fd49dd27d09234e639c4057e

46c44

4eefc5c1a

'1-49162-49172-156-157-47-53-49170-10-4865-4866-4867,5-10-11-13-65281-18-43-51,29-23-24-25,0]

Cyber Defence Analyst : CCDA

The Certified Cyber Defence Analyst (CCDA) training offers an investigative approach to Blue Teaming. It's designed to equip participants with the necessary knowledge and skills to become effective in threat detection and investigation as part of a Blue Team.

Threat Detection & Its Investigation	Enhance the real time investigation skills
Hands-on investigations	Cyber Defence Labs
Multiple Investigative mind map	Incident Response Strategies

Cyber Defense Analyst [CCDA]

BTF Lab Overview

Cyber Defense Team

Web based Investigation and Analysis

Email Header Analysis

Suspicious Attachment Phishing Investigation

© All Rights Reserved CyberwarFare Labs

Credential Phishing Investigation

Suspicious Macros Phishing Investigation

Web based Investigation and Analysis

Admin Page access detected

Subdomain Enumeration

detected

© All Rights Reserved CyberwarFare Labs

SQL-Map activity detected

Vulnerability Enumeration activity

detected

Network based Investigation and Analysis

NMAP Detection

DOS investigation

Netcat activity detected

Suspected Data exfiltration detected

Service brute forcing

Host Based Attack Investigation Challenges

Suspicious File activity detected

Suspected .SH file detected

Suspicious Linpeas activity detected

Multiple Remote

Failed Login Detected

© All Rights Reserved CyberwarFare Labs

Suspicious Scheduled task detected

Suspicious PowerShell activity

detected

Certification Procedure

Earn Accredible Badge

Giveaway Alert

5 Certified Cyber Defence Analyst | CCDA

We're giving away Latest Launch "Cyber Defence Analyst [CCDA]"

Thank You

For Professional Red Team / Blue Team / Purple Team / Cloud Cyber Range labs / Trainings, please contact

support@cyberwarfare.live

To know more about our offerings, please visit: https://cyberwarfare.live

