lml

FIDVFINCE PROCBSS
INJECTION V.2 WORKSHOP

e
& B

By- CyberWarFare Labs Team

© CyberWarFare R&D Pvt. Ltd.

About CyberWarFare Labs :

CyberWarFare Labs is an Ed-Tech Cyber
Security Focused Platform which is
totally engrossed in solving the problem
of Cybersecurity by providing them
real-time hands-on manner solutions to
problems of B2C & B2B Audience. We
provide Practical Labs [Simulation of
critical infrastructure] like Healthcare,
Nuclear Facility etc.

Partnered With :

STARTUP
INCUBATION AND
INNOVATION
CENTRE

T KANPUR 3iHub
IIT KANPUR it 98

[

National Centre
.n. <0 of Excellence

SIMMTROII Tusneslngy

..................

DSCI

PROMOTING DATA PROTECTION
L |

‘ Microsoft
for Startups

& Google Cloud

for Startups

AWS startup

~___>) programs

/AAzure

#startupindia
o

Our Offering On Courses :

RED TEAM

SPECIALIST COURSE

dows Internals \...4
For Red Team :
[Beginner Edition] .

AWS CLOUD 9%

dows Internals
ernel

(enel

ta Structures

ntroduction to Wi
etart Debuggind "
Explore the codes 1

7 Leam Various Kemel Dat

HYSRID MULTI =
ReED Taxnua o= o
M P cLoud -
RED TEAMING UF?IEALTH
ERATIONS RE0 saLU= b
PERAION RE CLOU
RED TEAMING = AWS L
= A oua
REd TEAMING

About Speakers :

John Sherchan
(Security Researcher)

John Sherchan, Red Team Security Researcher at CyberwarFare Labs. He has been working in
reverse engineering, malware development and analysis, and source

code review. He has very good knowledge of Windows Internals (Both User & Kernel Mode). He

has reversed several AV and EDRs to comprehend their architecture. He is currently engaged

in AV/EDR evasion projects at his place of employment.

Agenda Of Workshop :

In order to better prepare intermediate and advanced information security professionals,
CyberWarFare Labs is hosting a hands-on workshop on the subject of "Advanced Process Injection

techniques V.2"

- A thorough examination of Process Injection V.2 techniques
- Introduction to C for Offensive Operations

- Obtain materials + interact with the instructor

- Earn a certificate of attendance

(&) @ blogs.blackberry.com

:.: - B[ackBeffy Cybersecurity Automotive & IOT Critical Communications Inside BlackBerry

A Demon at Heaven's Gate

To load some of its previously used modules, Emotet has been observed to use an injection technique known as Heaven's Gate. Made popular in
the mid-2000s, Heaven's Gate is an infamous method used by malware to bypass Windows® on Windows64 (WoW64) APl hooks, by taking
malicious 32-bit processes to inject into 64-bit processes. This technique works because while many security products monitor file activity by
hooking 32-bit APIs (CreateFile, WriteFile, OpenFile), when running 64-bit code, an opportunity is presented to completely bypass many system calls
which would render the malicious code segments far too noisy.

In the interests of backwards compatibility, WoW64 actually allows 32-bit applications to be run on 64-bit systems too. When a 32-bit application is
run, both the 32-bit and 64-bit version of ntdll.dll is loaded. While a 32-bit process would normally pass through the 32-bit API hooks, malicious
processes can perform a jump instruction past these hooks in order to execute 64-bit code. This allows the injection of any malicious code to be
run without setting off immediate alerts via system calls. Windows initially developed this on the assumption that the 64-bit ntdll.dll could not be
accessed by a 32-bit process, but Heaven's Gate takes advantage of this by running x64 instructions which will be completely missed by any
application expecting x86 instructions. Heaven's Gate was therefore an early exploit on 64-bit systems that is still used to this day

Once through Heaven's Gate, Emotet loaders will use a technique known as process hollowing to suspend a legitimate process, then remap its
mage with malicious code. The malicious code will then be able to run from the now hollowed out process in order to load modules at will,

Table of contents

o 0k WN

Pre-Requisites

Process Injection Mindset

Classic Process Injection

APC Code Injection

Section Mapping

CWL New Offerings - Mini Courses

PRE-REQUISITES

e Vmware/VirtualBox
e Windows 10 x64
o Lab version: Windows 10 version 22H2 (x64bit)
e Any IDE or Editor (Visual studio 2022 is preferred)
System Informer
Programming Language:
o C/C++
e |ab codes:
o https://drive.google.com/file/d/1m9RqiOz5IQyT6VeTAde gAEEY8cylKFj/view?usp=share link

https://systeminformer.sourceforge.io/nightly.php
https://drive.google.com/file/d/1m9RqiOz5lQyT6VeTAde_gAEEY8cy1KFj/view?usp=share_link

Basic Mindset for Process Injection (remote)

=> Injecting PE/DLL/shellcode (malicious) into

another process’ address space
. Malware Process Legitimate
€ To hide from the AV products (ifijEeson) P
€ To hide from the naked eye of the analyst :
€ Sometimes, to access the resources (network,
memory, files etc.) owned by another process

e [e |
=> When performing process injection, we need to e
have the following queries in our mind
€ How can we access the remote process?
€ How can we send our malicious code to the remote c Executing
process?

L 4 How can we execute our malicious code which is
inside the remote process?

Process Injection - Access Remote Process

=> Getting Access to Remote Process
€ Obtain a handle to the remote process

e Handle is value given to the user-mode processes when they try to access some object (process, thread,
file, etc) from user-land

=> Obtaining the handle
€ Opening a executing process

e Win32 API: OpenProcess
e NT API: NtOpenProcess
€ Creating a new legitimate process
e Win32 API: CreateProcessA
° NT API: NtCreateProcessEx, NtCreateUserProcess
€ Duplicating existing process handle from another process

e Win32 API: DuplicateHandle
e NT API: NtDuplicateObject

Process Injection - Sending Malicious Code

=> Many ways to send malicious code to remote process, but few queries to have

in our mind
€ Do we have enough privilege to write code into the remote process?
e PROCSS_VM_OPERATION, PROCESS_VM_WRITE
€ Can we locate the address of the malicious code in the remote process that we just sent?
€ Is the memory region in remote process has enough memory access rights to write & execute

code in that memory region?
e Commonly we look for writable (W) & executable (X) memory region

o But in modern OS because of security reason memory region is usually either writable or executable (W"X).

Process Injection - Sending Malicious Code

=> Usually sending/injecting malicious code in remote process involves

€ Allocating new memory region with READ, WRITE & Execute access in remote process
e Win32 API: VirtualAllocEx
° NT API: NtAllocateVirtualMemory
° Access Rights: PAGE_READWRITE, (PAGE_READWRITE | PAGE_EXECUTE)
€ Writing payload into the memory
e Win32 API: WriteProcessMemory
° NT API: NtWriteVirtualMemory

-> Additionally, changing memory protection also involves in this stage

€ Usually, memory protection PAGE_READWRITE is changed to PAGE_EXECUTE_READ and vice versa.
e Win32 API: VirtualProtectEx
° NtAPI: NtProtectVirtualMemory

Process Injection - Execute the Malicious code

=> Common ways to perform execution

€ Create a new thread in target process

e Win32 API: CreateRemoteThread

e NT API: NtCreateThreadEx, RtICreateUserThread
€ Queuing APC in alertable thread

e Win32 APl: QueueUserAPC

e NT API: NtQueueUserAPC
€ Hijacking the executing thread

e Win32 API: SetThreadContext

e NT API: NtSetContextThread

=> Last phase of the injection
€ Some APIs that are used in this stage are heavily monitored by the AV/EDR products

Process Injection - Common APIs

Query Process/Thread

CreateToolhelp32Snapshot, NtQuerySystemInformation, NtQueryInformationProcess,
NtQueryInformationThread

Open Process/Thread

NtOpenProcess, NtOpenThread, ZwDuplicateObject

Reading Process Memory

ReadProcessMemory, NtReadVirtualMemory

Write to Process Memory

WriteProcessMemory, NtWriteVirtualMemory, ZwMapViewOf Section

Execute Code

RtlCreateUserThraed, CreateRemoteThread, NtCreate ThreadEx, QueueUserAPC,
NtQueueUserAPC, SetThreadContext

Classic Process Injection - steps

e Obtain Handle to a target process

o CreateToolHelp32Snapshot, OpenProcess, NtQuerySysteminformation
e Allocate new memory region at target process

o VirtualAllocEx, NtAllocateVirtualMemory
e Write payload into newly allocated memory

o WriteProcessMemory, NtWriteVirtualMemory

e Create new remote thread
o CreateRemoteThread, NtCreateThreadEx

Classic Process Injection

Malware Process Legitimate
(injector) Process

&

|

NN NN

NN NN

c thread Executing

Classic Process Injection

Malware Process
(injector)

Injects

NN NN /

NN NN NN N

Legitimate
Process

C
S

NN

NN NN

C thread Executing

Classic Process Injection

Malware Process
(injector)

Injects

m—

NN

NN NN N

Legitimate
Process

~A C v
A ~rA

c thread Executing

Classic Process Injection - API calls

- Kernel32.dll ;

&® CreateToolHelp32Snapshot, Process32First, Process32Next, Thread32First, Thread32Next,
OpenProcess, WriteProcessMemory, VirtualProtectEx, OpenThread

=> Ntdll.dll:
® NtQuerySysteminformation,NtAllocateVirtualMemory, NtWriteVirtualMemory

APC Code Injection

N0 200 200 2 2

APC stands for Asynchronous Procedure Call

APC functions execute asynchronously in context of a particular thread
In this techniques our shellcode is placed in APC Queue of the thread.
The payload will get executed when the thread goes to alertable state

Wait routines puts thread in alertable state, such as:
&® SleepEx()

& WaitForSingleObjectEx()

® WaitForMultipleObjectEXx()

APC Code Injection - Steps

=> Find the process to inject our payload
€ CreateToolHelp32Snapshot, NtQuerySysteminformation

=> Find all the threads in that process
€ Thread32First, Thread32Next

=> Allocate memory in that process
€ VirtualAllocEx, NtAllocateVirtualMemory

=> Write the payload into that allocated memory
€ WriteProcessMemory, NtWriteVirtualMemory

=> Put the APC function in the queue for all threads
€ QueueUserAPC, NtQueueUserAPC

=> APC function here points to our shellcode

APC Code Injection

Malware Process
(injector)

o

Rl L

NI NN N

Legitimate
Process

—— thread |

NN NN NN

NN NN N N N N N N

SleepEx(_.true)

APC Code Injection

Malware Process Legitimate
(injector) Process

ApcFunction

e
—J/ }h}w —

NN NN NN N
~N A NN
NI NI NN N

C Executing

APC Code Injection - API calls

- Kernel32.dll ;

&® CreateToolHelp32Snapshot, Process32First, Process32Next, Thread32First, Thread32Next,
OpenProcess, WriteProcessMemory, VirtualProtectEx, OpenThread, QueueUserAPC

=> Ntdll.dll:
® NtQuerySysteminformation,NtAllocateVirtualMemory, NtWriteVirtualMemory

Section Mapping

e Block of memory that can be shared between multiple processes [1]
e In memory, each section has corresponding views, which are parts of the

section that are visible to processes.
o Act of creating a view for a section is known as mapping a view of the section [1]

e In this technique a section is created and view of section is mapped to both
local & target process with different page protection

Section Mapping - Steps

=> Create a new section with full RWX page protection
® NtCreateSection

=> Map a view of section to local process (injector) with RW page protection
® NtMapViewOfSection

=> Map a view of section to target process with RX page protection
® NtMapViewOfSection

=> Write a payload to a view mapped to a local process
® memcpy

-> Create a remote thread with a base address of view mapped to remote

process
€ CreateRemoteThread, NtCreateThreadEx, RtICreateUserThread

Section Mapping

Malware Process
(injector)

Section

Legitimate
Process

C

Section Mapping

View 1
(RW)

Malware Process

(injector)

Section

Legitimate
Process

<

View 1
(RX)

Section Mapping

View 1
(RW)

Malware Process
(injector)

C
R

shellcode

Section

Legitimate
Process

C

shellcode

View 1
(RX)

Section Mapping

View 1
(RW)

Malware Process
(injector)

shellcode

-,

Section

e

Legitimate
Process

GO

shellcode

View 1
(RX)

Section Mapping - API calls

e Kernel32.dll:
o OpenProcess, CreateRemoteThread
e Nidll.dll:

o NtCreateSection, NtMapViewOfSection, NtCreateThreadEx

References

e https://blogs.blackberry.com/en/2023/01/emotet-returns-with-new-methods-of-
evasion
e https://attack.mitre.org/techniques/T1055/

https://blogs.blackberry.com/en/2023/01/emotet-returns-with-new-methods-of-evasion
https://blogs.blackberry.com/en/2023/01/emotet-returns-with-new-methods-of-evasion
https://attack.mitre.org/techniques/T1055/

Presenting our New Offering:

® Mini-Courses > - e
e Easy to grasp & foc ZFM é« w
e us on Yot * *
SpeC|f|C teChniques & ?&‘fsm;ée‘:‘;
w \
S f«ffordable & Smooth practical an\ ATTACK & DETECT ADvARMCE
e i d h
arning + Exam Procedure R PROCESS IMJECTIOM TECHMIQUES
N
gﬁg 2
N
§5 s @

I"‘III'-II-—EDIJFISE /

c@cyberwurfure.live

bs. All Rights Reserved

www.cyberwurlarejive 1inf
perwarFareé Lal

© copyright cyl

gL T&EAM

ANALYSE TeELeEMETRY JdATA

=YV=NT ANALYSIS OF
—0OLL=ecTed rOOTPRINTS

HANOS ON eX=erRcIS=S ON
MICROSOFT dereNdeER FOR
=NJdPOINT Mdacs=

oeT deesrer VISISILITY INTO
The WINOOWS ROSTS
MACHINES

ATTACK & DETECT ADVANCE PROCESS INJECTION TECHNIQUES CERTIFICATION PROCEDURE :

Study the materials & Earn Digital
Practise the Labs Badge

Enroll in “Attack & Detect Attempt MCQ Examination &
Advance Process Injection achieve the 80% passing criteria
Techniques”Mini-Course

© CyberWarFare R&D Pvt. Ltd.

Thank
ou!

For any queries
Mail : info@cyberwarfare.live

Follow us on:

000Q0D

Know more visit at www.cyberwarfare.live

mailto:info@cyberwarfare.live
https://www.linkedin.com/company/cyberwarfare/
https://www.facebook.com/cyberwarfarelabs
https://twitter.com/cyberwarfarelab
https://www.instagram.com/cyberwarfare_labs/
https://www.youtube.com/channel/UC4X1CYxw0fDIpFX5zmC8WNg

